Department of Biomedical Engineering and Computational Science BECS

Bayesian Statistical Methods

Bayesian methodology group lead by Aki Vehtari conducts research in the field of modern computational science and develops generic computational statistical methods. These include fast approximative inference methods as well as model assessment and selection methods for complex hierarchical, non-parametric, graphical, dynamic and spatio-temporal models. The developed methods can handle larger datasets using more elaborate and computationally intensive models than before while keeping the computation time reasonable to aid researchers in other scientific fields. The methods are applied to challenging scientific problems in, e.g., brain signal analysis (MEG, fMRI), epidemiology, genetics, bioinformatics, medicine, tomography, animal population research, audio signal processing, and tracking.

Group members

Senior reseachers

Post Doc Reseachers

Doctoral students

Research students

  • Jukka Koskenranta
  • Juho Piironen
  • Ville Tolvanen

Past members

  • Tommi Mononen
  • Pasi Jylänki
  • Janne Ojanen
  • Jaakko Riihimäki
  • Max Hurme
  • Eero Pennala
  • Heikki Peura
  • Pekka Marttinen
  • Jouni Hartikainen
  • Ville Pietiläinen
  • Jarno Vanhatalo
  • Aki Havulinna
  • Eli Parviainen
  • Saara Suikkanen
  • Olli-Pekka Kahilakoski
  • Matleena Kukkonen
  • Sasu Mäkelä
  • Roberto Calandra
  • Ernesto Ulloa
  • Enrique Lelo de Larrea Andrade
  • Tuomas Nikoskinen
  • Ville Pietiläinen
  • Markus Siivola

Downloads

Current projects

Past projects