Home > src > ekf_predict1.m

ekf_predict1

PURPOSE ^

EKF_PREDICT1 1st order Extended Kalman Filter prediction step

SYNOPSIS ^

function [M,P] = ekf_predict1(M,P,A,Q,a,W,param)

DESCRIPTION ^

EKF_PREDICT1  1st order Extended Kalman Filter prediction step

 Syntax:
   [M,P] = EKF_PREDICT1(M,P,[A,Q,a,W,param])

 In:
   M - Nx1 mean state estimate of previous step
   P - NxN state covariance of previous step
   A - Derivative of a() with respect to state as
       matrix, inline function, function handle or
       name of function in form A(x,param)       (optional, default eye())
   Q - Process noise of discrete model               (optional, default zero)
   a - Mean prediction E[a(x[k-1],q=0)] as vector,
       inline function, function handle or name
       of function in form a(x,param)                (optional, default A(x)*X)
   W - Derivative of a() with respect to noise q
       as matrix, inline function, function handle
       or name of function in form W(x,param)        (optional, default identity)
   param - Parameters of a                           (optional, default empty)

 Out:
   M - Updated state mean
   P - Updated state covariance
   
 Description:
   Perform Extended Kalman Filter prediction step.

 See also:
   EKF_UPDATE1, EKF_PREDICT2, EKF_UPDATE2, DER_CHECK,
   LTI_DISC, KF_PREDICT, KF_UPDATE

CROSS-REFERENCE INFORMATION ^

This function calls: This function is called by:
Generated on Fri 12-Aug-2011 15:08:47 by m2html © 2005