Home > src > ukf_update2.m

# ukf_update2

## PURPOSE

UKF_UPDATE2 - Augmented form Unscented Kalman Filter update step

## SYNOPSIS

function [M,P,K,MU,S,LH] = ukf_update2(M,P,Y,h,R,h_param,alpha,beta,kappa,mat)

## DESCRIPTION

UKF_UPDATE2 - Augmented form Unscented Kalman Filter update step

Syntax:
[M,P,K,MU,IS,LH] = UKF_UPDATE2(M,P,Y,h,R,h_param,alpha,beta,kappa,mat)

In:
M  - Mean state estimate after prediction step
P  - State covariance after prediction step
Y  - Measurement vector.
h  - Measurement model function as a matrix H defining
linear function h(x) = H*x+r, inline function,
function handle or name of function in
form h([x;r],param)
R  - Measurement covariance.
param - Parameters of h               (optional, default empty)
alpha - Transformation parameter      (optional)
beta  - Transformation parameter      (optional)
kappa - Transformation parameter      (optional)
mat   - If 1 uses matrix form         (optional, default 0)

Out:
M  - Updated state mean
P  - Updated state covariance
K  - Computed Kalman gain
MU - Predictive mean of Y
S  - Predictive covariance Y
LH - Predictive probability (likelihood) of measurement.

Description:
Perform augmented form Discrete Unscented Kalman Filter (UKF)
measurement update step. Assumes additive measurement
noise.

Function h should be such that it can be given
DxN matrix of N sigma Dx1 points and it returns
the corresponding measurements for each sigma
point. This function should also make sure that
the returned sigma points are compatible such that
there are no 2pi jumps in angles etc.

Example:
h = inline('atan2(x(2,:)-s(2),x(1,:)-s(1))','x','s');
[M2,P2] = ukf_update2(M1,P1,Y,h,R,S);

UKF_PREDICT1, UKF_UPDATE1, UKF_PREDICT2, UKF_PREDICT3, UKF_UPDATE3
UT_TRANSFORM, UT_WEIGHTS, UT_MWEIGHTS, UT_SIGMAS

## CROSS-REFERENCE INFORMATION

This function calls:
This function is called by:

Generated on Fri 12-Aug-2011 15:08:47 by m2html © 2005