• Example: Alcohol related deaths in Finland
• Spatial priors and benefits of GP prior
• Computation and approximations
• Spatio-temporal
• Explanatory variables
• Integration over the latent space
• Hyperparameters
Example: deaths in Finland

(a) Number of deaths

Disease mapping with Gaussian processes
Example: deaths in Finland

(d) Number of deaths

(e) Raw relative risk

Aki.Vehtari@aalto.fi

Disease mapping with Gaussian processes
Example: deaths in Finland

(g) Number of deaths
(h) Raw relative risk
(i) Smoothed risk
Example: alcohol related diseases in Finland

- Collaboration: The National Institute for Health and Welfare
- Data: Statistics Finland
- Population of Finland: \(\approx 5.3 \) million
- About 10 500 inhabited 5km \(\times \) 5km cells in Finland
 - many cells with no inhabited neighbors
- In 2001–2005 about 7 900 died due to alcohol diseases (more than five times compared to deaths due to traffic)
 - expected death count less than one per cell
Example: alcohol related diseases in Finland

- Sex-age-education standardized expected death counts used to compute the raw risk
- Risk smoothed using GP with long and short length scale and negative-binomial observation model
Example: alcohol related diseases in Finland

- Sex-age-education standardized expected death counts used to compute the raw risk
- Risk smoothed using GP with long and short length scale and negative-binomial observation model

Is the relative risk higher in the population centers?

Aki.Vehtari@aalto.fi

Disease mapping with Gaussian processes
Example: alcohol related diseases in Finland

- The smoothed relative risks vs. the population density
Example: alcohol related diseases in Finland

- The smoothed relative risks vs. the population density

- Add population density as explanatory variable
Example: alcohol related diseases in Finland

- Population density and spatial variation explain the variation in the risk

Population density effect

Spatial effect

Disease mapping with Gaussian processes
Adding explanatory covariate can change the picture

1) Spatial

2) Spatial+covariate

In spatial epidemiology CAR is most used model.

Correlation defined conditionally based on a neighborhood structure → discrete definition

- major computational speed-up if a precision matrix is sparse due to small neighborhoods
- describes only local correlation
- neighborhood definition may be difficult for irregularly spaced data and high dimensional data
Example: alcohol related diseases in Finland
Comparison to CAR

- Compared to CAR computed with INLA software
 - CAR model lacks long range correlation part
 - CAR model has much higher variance, especially for cells having no or few inhabited neighbors
 - GP has a better predictive performance
• Markov random field prior can be good
 - e.g. INLA-software can approximate Matérn covariance function with MRF
 - but precision matrix is not going to be sparse in high dimensional cases ($d \geq 3$), e.g. INLA-software doesn’t support $d > 3$ and limited support for $d = 3$
Computation and approximations

- Full $O(n^3)$
- Short range dependencies
 - Markov \rightarrow sparse precision matrix
 - Compact support \rightarrow sparse covariance matrix
 - $O(p^3 n^3)$, where $0 < p < 1$ is the proportion of non-zeros
- Long range dependencies
 - Reduced rank (e.g. FIC) $O(nm^2)$
 - SVI-GP $O(m^3)$ (Hensman et al, 2013)
The correlation structure of FIC with different choices of inducing inputs

Figure: The correlation for 3 locations \mathbf{x}. Inducing inputs are marked with \star.

Reduced rank approximations and inducing points
• No single approximation which works efficiently for both short and long range dependencies

- e.g. compact support + FIC (used in alcohol study)

• No single approximation which works efficiently for both short and long range dependencies

• Short and long range dependencies
 - e.g. compact support + FIC (used in alcohol study)
 Vanhatalo, Pietiläinen, Vehtari, Stat in med, 2010,
 http://dx.doi.org/10.1002/sim.3895
Spatio-temporal

- Full $O(n^3 T^3)$
- Markov / compact support / reduced rank
- INLA-software: unstructured interaction (ie. no model for spatio-temporal jointly)
- Cseke et al - discrete spatio-temporal model, sparse precision, restricted sparse messages
- infinite-dimensional filtering $O(n^3 T) \ (O(nm^2 T))$
 Simo Särkkä talks about this tomorrow
County incidences and background population for years 1953–2003.

51 years, 431 counties → 21,981 observations

Data: Finnish Cancer Registry

Model: GP with temporal + spatial + spatiotemporal component
Example: lung cancer women

(a) Temporal

(b) Spatial

Disease mapping with Gaussian processes
Example: lung cancer women

(a) 1953
(b) 1963
(c) 1973
(d) 1983
(e) 1993
(f) 2003

Disease mapping with Gaussian processes
Spatio-temporal

- Spatio-temporal GPs can be written as linear stochastic partial differential equations (SPDE)
- Reduces computational complexity from $O(n^3 T^3)$ to $O(n^3 T)$, i.e. method scales linearily in T
- SPDEs make it easier to specify non-stationary temporal dynamics, which are necessary, for example, when performing future predictions
- n limited as for spatial GP
 - few thousand with no sparse approximations
 - more than ten thousand with sparse approximations
- Has been tested with over million spatio-temporal points
- Simo Särkkä talks more about this tomorrow
Spatio-temporal malaria models?

- Spatio-temporal GPs can be written as linear stochastic partial differential equations (SPDE).
- SPDEs make it easier to specify non-stationary temporal dynamics, which are necessary, for example, when performing future predictions:
 - seasonal variation
 - transmission dynamics with SPDEs?
Non-stationarity

- SPDEs make it easier to specify non-stationary temporal dynamics
- Spatial non-stationarity
 - deformations
 - additional GP for latent signal magnitude or length-scale
Explanatory covariates

- Goal is to explain the spatial variation
- Spatial maps can be used to aid hypothesis generation
- Adding covariates hopefully makes the residual in spatial domain unstructured
- GP can model non-linearities and interactions implicitly
1043 cases of acute myeloid leukemia in adults
- recorded between 1982 and 1998 in the North West Leukemia Register in the United Kingdom
- log-logistic model for survival times (16% were censored)
- predictors are
 - age
 - sex
 - white blood cell count (WBC) at diagnosis
 - the Townsend score which is a measure of deprivation for district of residence
Figure: Posterior mean of the latent function
Leukemia survival times

- **Age (years)**
- **Sex**
- **WBC (log$_{10}(50\times10^9/L)$)**
- **Townsend deprivation index (TDI)**
- **Spatial location**

Disease mapping with Gaussian processes

Aki.Vehtari@aalto.fi
Leukemia survival times

Age (years) vs. Survival

Sex vs. Survival

WBC (log$_{10}$(50×10^9/L)) vs. Survival

Townsend deprivation index (TDI) vs. Survival

Spatial location with color scale

Aki.Vehtari@aalto.fi

Disease mapping with Gaussian processes
Leukemia survival times

Aki.Vehtari@aalto.fi

Disease mapping with Gaussian processes
Leukemia survival times

Analysis in GP chapter of

Explanatory covariates

- GP can model non-linearities and interactions implicitly
- INLA-software using MRFs allows additive effects and 2D interactions
Multiple diseases

- Multitask / multioutput GPs
 - just add the disease type as a covariate
Integration over the latent space

- Non-Gaussian models, e.g., \(y \sim \text{Poisson}(\alpha \exp(f(s, \theta))) \)
- We are interested in predictions \(p(y_i|s_i) \)
- Integration over the latent variables \(f_i \) and hyperparameters \(\theta \) required
In our experiments
- EP about as good as MCMC, but **much** faster
- Laplace almost as good as EP, but somewhat faster
- VB not as good as EP, byt YMMV
- difference is negligible for many likelihoods given larger datasets
- differences in classification and with non-log-concave likelihoods
Integration over the latent space

- In our experiments
 - EP about as good as MCMC, but much faster
 - Laplace almost as good as EP, but somewhat faster
 - VB not as good as EP, by YMMV
 - difference is negligible for many likelihoods given larger datasets
 - differences in classification and with non-log-concave likelihoods

- Mysterious Sheffield-method? (Hensman et al, submitted)
Integration over the latent space

- In our experiments
 - EP about as good as MCMC, but much faster
 - Laplace almost as good as EP, but somewhat faster
 - VB not as good as EP, byt YMMV
 - difference is negligible for many likelihoods given larger datasets
 - differences in classification and with non-log-concave likelihoods

- Mysterious Sheffield-method? (Hensman et al, submitted)

- I think that in most cases distributional approximations ok
 - If not, pseudo-marginal likelihood approach (Filippone & Girolami, 2013) might be the best choice for MCMC
Hyperparameter inference

- Type II MAP
 - works well when the number of hyperparameters is small and n is big
- Adaptive grid 1–3 hyperparameters
- CCD
 - 1–15 hyperparameters \rightarrow 3–287 integration points
 - usually works well, but sometimes underestimates the uncertainty

Aki.Vehtari@aalto.fi

Disease mapping with Gaussian processes
Hyperparameter inference

- Type II MAP
 - works well when the number of hyperparameters is small and n is big
- Adaptive grid 1–3 hyperparameters
- CCD
 - 1–15 hyperparameters \rightarrow 3–287 integration points
 - usually works well, but sometimes underestimates the uncertainty
- Linear approximation (Garnett, Osborne, Hennig, 2013)
- EP can be used to integrate over noise and signal variances (other hyperparameters in theory, but not fast (yet?))
- MCMC
Hyperparameters

(a) Grid based

(b) Monte Carlo

Figure: The grid based, Monte Carlo and central composite design integration. Contours show the posterior density $q(\log(\vartheta) | D)$ and the integration points are marked with dots.

Disease mapping with Gaussian processes

Aki.Vehtari@aalto.fi
Code available in Matlab/Octave (RccpOctave for R) toolbox GPstuff

GPstuff homepage: http://becs.aalto.fi/en/research/bayes/gpstuff/
GPstuff

• Sparse models
 - Compactly supported covariance functions
 - Fully and partially independent conditional (FIC, PIC)
 - Compactly supported plus FIC (CS+FIC)
 - Variational sparse (VAR), Deterministic training conditional (DTC), Subset of regressors (SOR)

• Latent inference
 - marginal posterior corrections (cm2 and fact)
 - Scaled Metropolis, Scaled HMC, Elliptical slice sampling

• Hyperparameter inference
 - Type II ML/MAP
 - Leave-one-out cross-validation (LOO-CV)
 - Metropolis, HMC, No-U-Turn-Sampler (NUTS), Slice Sampling (SLS), Surrogate SLS, Shrinking-rank and Cov-matching SLS
 - Grid, CCD, Importance sampling
Acknowledgments

- Researchers
 - Jaakko Riihimäki
 - Ville Tolvanen
 - Simo Särkkä
 - Jarno Vanhatalo
 - Jouni Hartikainen
 - Ville Pietiläinen

- Collaborators and data
 - Heikki Joensuu, MD
 - Helsinki University Central Hospital
 - The National Institute for Health and Welfare
 - Finnish Cancer Registry
 - Statistics Finland